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ABSTRACT 

Synthetic Aperture Radar (SAR) senscrs have many advantages over electro-optical sensors (EO) for target recognition 
applications. such as range-independent r5solution and superior poor weather performance. However, the relative 
unavailability of SAR data to the basic research community has retarded analysis of the fundamental invariant properties of 
!>AR sensors relative to the extensive invariant literature for EO, and in particular photographic sensors. This paper develops 
the basic geometric: imaging transformation associated with SAR from first principles, and then gives an existence proof for 
several geometric scatter configurations v/hich give rise to SAR image invariants. 
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1. INTRODUCTION O'^ 30 

w'o E5 ("urrent resciirch into automatic target -ecognition using SAR has tended to focus on the photometric as opposed to geometric ?. o C 
properties of SAR sensors. Template based approaches wherein recognition is obtained by matching the uiiknown target O" Q. H 
image chip ;o a precomputed reference image are popular,'-^ but suffer from a lack of scaleability when a large number of =?. O O 
target classes or extensive variations w target appearance are encountered. This is a fundamental limitation of such view- § *X] "^ 
c:entered methods.^ r-C (/) 

ir C7 H 

An alternative to view based approaches to automatic target recognition (ATR) is an object-centered approach. In the object-    3 TI m 
centered approach, recognition is accomplished by comparing sensed data to stored three dimensional (3D) models that S" 52. 2 
ideally captjre all of the essential signature variability of the target as imaged by a given sensor.'* An example of such an Q. gg m 
approach for SAR ATR is embodied in the moving and stationary target acquisition and recognition or MSTAR system.^ In W Z 
MSI AR, predicted peak and region features are matched to SAR image extracted peaks* and regions in an iterative fashion ]> 
to allow for variation in the sensed object's signature. To avoid the computational cost incurred by attempting on-line 
calculation of radar scattering, MSTAR utilizes a data compression technique^ to exfract 3D scattering centers from predicted 
xpatch-t syr thetic SAR data. Although the MSTAR approach has been successful in overcoming some of the scaleability 
limitations of the template approach, it does not exploit all of the information inherent in the explicit consideration of 3D 
models and their projection into a two dimensional (2D) image. 

There has been considerable mterest in the object-centered approach to ATR for optical sensors, and in particular for 
photographic sensors. Numerous examples can be found in the recent image understanding literature.^'^^'^'''^ An object- 
cen|ered technique of particular interest is geometric invariance. •■' Simply stated, a geometric invariant is an image 
measurable property of a 3D configuration that is unaffected by imaging viewpoint. Since it's introduction to computer vision 
in 1988,^'^ geometric invariance has been extensively developed for vision applications.'^ Geometric invariants can be 
derived for single sensor views of a 3D object or as a relationship across multiple views. One can term these two types of 
invariant monoscopic and stereoscopic invariants respectively. For any given imaging sensor, there are generally a richer 
array of stereoscopic invariants available than monoscopic invariants, but this nimierical advantage is offset by the need for 
image correspondence in order to use stereoscopic invariants. Geometric invariants can be absolute, or completely 
independent of the particular imaging geometry (i.e., independent of sensor position and orientation relative to the object), or 
they can be relative to a particular imaging geometry. Relative invariants are typically of mathematical interest and are not 
generally useful for object recognition applications, except to the extent that they can be used m combination to generate 
absolute invariants. Geometric invariants can be powerful features for object recognition since they alleviate any need to 
search for a match over object pose. To date, little of geometric invariant theory has been applied to radar frequency (RF) 
sensors. Payton and Barrett have examined invariant structures in stereo HRR sensing,'* and Binford has examined persistent 
scattering of BTR70 vehicle road wheels in xpatch-t data as an invariant indexing mechanism.'^ Stuff is exploring invariant 
constraints for application to 3D SAR sensor signal processing, but little of his work has appeared in the literature as yet.'* 

One potential extension of the MSTAR approach is to consider the geometric effects of the SAR sensor transformation in 
conjunction with the 3D scattering center concept. By addressing the algebraic nature of the SAR imaging transformation it 
becomes possible to determine configurations of 3D scattering points that give rise to monoscopic SAR geometric invariants. 
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The development of the basic mathematics of monoscopic SAR geometric invariants is the primary thrust of this paper. 

2. A HIGH RANGE RESOLUTION (HRR) RADAR INVARIANT 

Before developing SAR geometric invariants, it is useful to first consider the one dimensional (ID) radar case. This allows 
for p simpler analytic development, and the result naturally extends to the 2D SAR case. This also happens to be the 
historical order in which the research progressed. Figure 1 gives the basic imaging geometry for the HRR sensor. 

Figure 1. HRR geometric transformation 

In this paper, we shall assume that any time mention is made of a '3D point' we are referring to a scatterer whose phase 
center is located at that point in 3D space, and not just any arbitrary 3D location devoid of content. That is to say, we are 
focusing our attention on sources of RF scattering that can be placed at a particular 3D location. 

We approximate the HRR sensor transformation of a point in 3D space as the perpendicular projection of that point onto a 
vector along the radar look direction. Note that all points in any plane perpendicular to the look du-ection are projected into 
the same point in the HRR return. This is an approximation because the true transformation projects all pomts of equal 
distance from the radar (within the radar main beam) onto the radar look direction, so that the plane in our approximation 
should actually be a spherical surface. Our approximation is thereforef equivalent to making a plane wave assumption for the 
radar wave front at the scale of typical target sizes. In a typical HRR return, the signal is divided into many discrete 
resolution cells that represent the coherent addition of all scatters within a range bm (in effect all scatterers in a 3D planar 
slab are projected and summed coherently into a single HRR range cell). We assume that the RF scattering is such that for at 
least some cells a single scattering point in 3D dominates it's corresponding HRR return cell. 

Figure 2. A typical HRR return of an aircraft object 

A typical HRR return is shown in figure 2. Since HRR is a one dimensional signal, it is apparent that monoscopic invariants 
can only be obtained as some function of the distances between HRR return peaks. Since invariants are inherently 
dimensionless, it is reasonable to consider ratios of HRR inter peak distances as a likely invariant structure. Our strategy is to 
determine if there exists a 3D arrangement of scatterers that would give rise to an invariant distance ratio m the 
corresponding ID HRR projection of the scattering centers. From figure 1, the projection a of a 3D point r given in 
{^>y,z) coordinates into the ID HRR signature is easily found given the radar look direction unit vector ^\y 

((r -oy-a^<f) ,>=0->a =(f-o)-/? 
(1) 

where o is the arbitrary origin of the HRR coordinate system. Note that without loss of generality « can be assumed to 
include any scale factors needed for the HRR down range variable. This gives the fundamental HRR transformation 
projection constraint 

« =/p.B^'") = (?■ -o)/! 
(2) 

http://www.mbvlab.wpafb.af.mil/papers/Gifsars/geoinv.htm 4/29/04 
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We are^ interested in deterniining conditions under which we have distance ratio invariants in HRR. This generally implies at 

least three distinct points in 3D space. We denote distinct 3D points by ^', 3D Euclidean distances between any pair of two 

distinct points ^' '^^ 'by   n^-'-^'J _ g^d the corresponding ID HRR distances by   ^^"  >'    "'      ' I. We can then relate 
the 3D and ID distances between distmct points by 

«. -«, =A..fe)-/p.4^j=(fe -^)-[p> -°]]>-- [p. -p]>^<^j{p.,pyp, ■>, (3) 

where "^J' is the unit direction vector from ^' to P'. Therefore 

d, [a„a]^]^,'a\ = ]^, [p, ,p^ ]p^ ■ /j = dj^p, ,p, )]p„ ■ /| 
(4) 

Note that an added benefit of considering inter peak distances in the HRR signature is the elimination of the need to consider 
the HRR coordinate origin, so that we immediately gain invariance to 3D translation. A ratio of distances between dominant 
scatterers on the HRR line is related to the corresponding 3D distances between the scatterers by 

Therefore HRR distance ratios give an invariant if 

[7—:q = constant 
P«>^ (6) 

regardless of the orientation ** of the radar look du-ection. Clearly a sufficient condition for this to arise is for   '' and P"- to 

be parallel vectors, that is,    '' , and in this case the constant is unity and we have an absolute invariant. For arbitrary 

■* it is readily seen that this must also be a necessary condition as well. This can be shown as follows. For ease of notation 

denote ^>' and P'^ by " and ^ respectively. Our constraint then is 
in- SI 
fr-^ = f{P'^'^^ = constant 
^■^^ ,(7) 

and we are interested in the relationships between " and '^ satisfying this constraint for arbitrary '', subject to ■* ^ and 

'^*P so that this constraint does not become undefined or trivially satisfied respectively. Let ''    ^ . Then since 1^ ^'     , we 

have -^{P'^'^) - ^. Similarly for ''^^ -^ we obtain ■^{P'^'Pf " ^. Therefore for arbitrary '^, ^{P'^'n "" ^ In this case 

Since this equation must hold for arbitrary "*, it holds in particular for ''    " and so we obtain P "~ ~  or " ~ ~'^, i.e., 
parallel vectors. This proves that parallel vectors is both a necessary and sufficient condition for an absolute ratio distance 
invariant in HRR. Note that Payton and Barrett^^ derive a similar result for the case of three coUinear points as a special case 
of a two view stereoscopic HRR invariant for four coplanar scattering centers, which they term a "Velten Invariant." As the 
name might imply, this invariant was first suggested by the author, and Payton and Barrett examined HRR invariants at the 
author's request under contract to AFRL. 

3. SAR GEOMETRIC INVARIANTS 

We begin as we did for the HRR case by deriving an approximation for the SAR 3D to 2D imaging transformation. As in the 
HRR case, this is an approximation of the SAR imaging projection, as the true physical situation the projection is also along a 
spherical front centered at the synthetic aperture phase center. However, for objects of limited extent such as vehicles, the 

http://www.mbvlab.wpafb.af.mil/papers/Gifsars/geoinv.htm 4/29/04 



Distance Ratio Invariants in SAR Imagery Page 4 of 11 

error introduced by assuming a perpendicular projection into the slant plane is negligible,^^ and we are in effect assuming 
that the point is in the far field of the synthetic aperture. 

Z 
y 

Figure 3. SAR imaging geometry 

Denote 3D world coordinates as ^ '"' '', general (column) vectors in 3D world coordinates by f, and unit vectors in world 

coordinates by '' , where r is any Roman symbol The SAR slant plane position and orientation are given by unit normal 

vector " located at '^ in tlie 3D world frame. We specify a 2D coordinate system lying in tlie slant plane (i.e., tlie SAR image) 

by perpendicular vectors     ~ ^•■^ and ^ "   , where   •■ and   " are slant plane coordinate scale factors and " and ^ are unit 
vectors. Fmally, we denote locations in the 2D SAR image coordinate system using Greek symbols e.g. * , where "* is an 

ordered pair specifying components in the ^"'^' directions. As in the HRR case, we will assume that SAR image peaks are 
generally the result of a dominant 3D scatterer. 

Approximate the SAR image of a point at '^ as the perpendicular projection of ^ into the slant plane. We wish to determine 

the SAR image coordinates of -^, or "* in figure 3, as a function of the know slant plane geometry. Clearly * is the slant 

plane perpendicular unage of -^   '^ . Since ^ =P    *? is a vector whose origin is at the slant plane origin, we can proceed by 

fmding the change of coordinate matrix 7'than transforms vectors in '^ '^' ' coordinates with their origin at ^ into 

C^"'") coordinates. Clearly ^ = t"   ^   "]',sothat « transforms to ^'= ^^ = (" ■^'""■^'"•^)'inthe C^"'"). 
can then easily determine •* fi-om 

system. We 

a^ Pa' 
[1    0   0] [l   0   ol [1   0   0] 
0    1    0 a' = 0    1    0 TS = 0   1    0 

n 

". ". u. 

T. ^, ". a = 

". ". "■. 

u     u 

V       V       V 
\ua,v a) 

(9) 

Note that we can express ^astheproductof scaling and rotation matrices   'and   "'respectively. 

TT    - 
i    rtiL 

S^ 0 0 u^' 

0 ^ 0 V 
0 0 1 rJ 

(10) 

Therefore the SAR image coordinates "* of a 3D pomt at ^ are 

a- 
5      0 

b 

0    K b-.i 
(11) 
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For the case of a SAR system with 'square' pixels, i.e., for which the along and cross range image dimensions are of the same 

resolution, we have 5.. s 5 and the SAR image coordinate expression becomes 

i?= 5 {p-q)=sM{p-q) 
(12) 

We shall only consider SAR systems with square pixels in this paper. It is instructive to consider the overall algebraic 
structure of the SAR imaging transformation. Prior to projection into the slant plane we have 

f:^' ^'^'■. b = f{p)byb := sT^{p-q)whBieT^ ^S0{X3) ^^^^ 

This transformation is a special case of an affine 3D to 3D transformation, since the matrix is taken from the special 

orthogonal group (i.e., othronormal matrices) of dimension 3 over ™, which is a subgroup of the general linear group 

^   ' ' of 3x3 invertible matrices over ^. This transformation is a group action in 3D space. To get the SAR 
transformation this group action is followed by a direct subspace projection using the projection matrix 

1   0   Ol 

0   1   0 (14) 

into the slant plane (or -^ ) as given above. Note that by use of homogenous coordinates^" we can express the affine 
n T 

transformation of a point '^ via a single homogenous 4x4 transformation matrix   * as 

K - s?;j?* = 5 

u -uq 

v^ -vq P 
n' -nq 1 

0    0 0 1 
,(15) 

and the SAR transformation can be expressed as a 2x4 matrix operating on 3D points expressed in homogenous coordinates 
via 

-uq 

-vq 
(16) 

Thus there are 6 degrees of freedom for the SAR transformation needed to specify the location (3 degrees of freedom in ^ ), 
T orientation (2 degrees of freedom in the rotation matrix   ""), and the coordinate scaling (1 degree of freedom) in the slant 

plane. Note that the translation component of the SAR transformation matrix will cancel out for line segments 

ttf = s v^    v^    V.     -vq[i   "    1   j-^^r[p^-p,}-^M[p,-p,} 
(17) 

making it convenient to work with distances between points instead of individual points since by doing so we immediately 
obtain 3D translation invariance. Now that we have derived the essential transformation mformation, we can explore 
invariant constraints. We can easily relate the distance between any two distinct points in the SAR image to their 3D distance 
as 

^M''-\)^h- '^ II=IM^i - ^. )|=It^'^. [p,. p. )A. II='^^ [p^. p. )lk#„ II (18) 

where ^^' is the unit vector in the ^'   -^^ direction, and   **■ ' is Euclidean distance m k dimensions. Therefore a ratio of 
distances between 2 distinct pairs of SAR image points 

dj[q,'^] _ d^{pi,P2)||it<^aH 
d-i[^,^]    d^[pi,p^ 

(19) 

http://www.mbvlab.wpafb.af.mil/papers/Gifsars/geoinv.htm 4/29/04 
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will be invariant to the SAR imaging geometry provided 

f[^'P».P4,)^ r^:-^= constant 
•<20) 

Since we seek 3D point configurations that will satisfy this constraint for arbitrary M, it is obvious that one such condition is 

that the distinct point pairs form parallel lines in 3 space, i,e., ^V ~ - J^s. Underthis condition we would have^aaabsojute 
invariant and the constant would be unity in this case. Whether this sufficient condition for an absolute invariant is also a 
necessary condition remains to be detennii^ied. 

We shall show that (20) is also a necessary conditfon for absolute invariance. To prove this, we shall proceed as above for the 

HRR case. For ease of notation, replace -^i and J^ with -P^and ^^specttveiy. Ihen we have 

/(M,^T ll*#" #5' 

^i2 J^^y={ip) 

uqf*{^;qf 

(21) 

anJwe are-mterested" in bounds on ^ fot-arKtraqf ^aatL? .N6te-thatt>olE^e numerator and denommator of iBiis expression 

lie betweai 0 and 1, since each is the magnitude of the projection of a 3D unit vector into a 2D subspace. Now let " ~ -^. 
Then 

1 x= 
^7q^^fqf 

tv 
.X2ZJ 

For    ~ ^we obtain 

/ ̂
^W^¥¥,, 

■(23) 

V   /=1 Therefore for arbitrary " and '^ , •'       , which uCtunv implies 

{u ■ pf + {v ■ pf = [u --if + (v qf 
(24) 

Let ""-P^. Then 

l={p^qf+^qf 
(25) 

Let " " '^. Then 

{^■p}- *{vp)   =1 
.(26) 

Hence for arbitrary " 
i-i       j„    „vi 

[vq)   =if'p)  =^ ivq-v ■p)[vq+v ■p^^Q^i'Vq = ±vp 
(27) 

and since ^ is also arbitrary, we obtain -f" " "^ or parallel vectors. Hence parallel vectors is a necessary and sufficient 
condition for an absolute ratio distance invariant in SAR imagery. 

3.1 Generalizations of the parallel vector invariant 

http://wv^w.nibvlab.MT?afb.af.niil/papers/Gifsai's/geotmr:fatnr 4/29/04 
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Having established the invariance of parallel vectors under HRR and SAR imaging geometry, a generalization of this result 
immediately suggests itself. It is clear that two triangular areas (i.e., two triples of co-planar scattering centers) lying in 
paraHe^p^attes also-project invariantly (figure 4). 

4  >! flj I        \l.\  X t\ 

K^&zl     [ij-x^l 

Figure 4. SAR projection of triangular areas lying in parallel planes 

This is because the area of a triangle is proportional to the magnitude of the cross product of any two of it's sides expressed 
as vectors in 3 space (figure 5). Since the cross product is perpendicular to it's base vectors, then any cross product pairs 
taken from two triangular areas lying in parallel planes will also be parallel, and by the results of the previous sections, the 
ratio of the magnitudes of these cross product vectors will be preserved under either the SAR or HRR transformation. 

l|^|h = i|^||6|sin^=i^xi| 

Figure 5. Area of triangle formed by vectors « and i> 

Since the SAR transformation substantially preserves the scattering center geometry, this observation may prove useful as a 
feature in SAR imagery. Thus there would be a rich set of potential invariants in the case of two parallel planes of coplanar 
scattering centers, a situation that may be common in SAR imagery of vehicles and other man-made structures. Note that 4 
coplanar points with no three colinear would alse-give rise to inv^^ants as a special case of the above, since there would be 4 
distinct triangles of scattering centers. From 4 distinct triangles 6 independent ratio invariants can be formed. 

2.   SAR quasi-invariants 

In many cases it may not be wise necessary or even to demand an absolute invariant to obtain a feature useful for recognition 
in SAR imagery. This is because the fluctuation in scattering center amplitude and phase center location as a function of SAR 
imaging geometry is such that scattering peak location persistence is limited to a few degrees in most cases.^' It is therefore 
prudent to examine whether a more general geometric configuration can be found that provides feature stability with pose in 
a local sense. Such local invariants are termed quasi-uivariants by Binford.^^ 

Following Binford's definition of quasi-invariant, to determine the conditions under which ratios of distances in a SAR unage 
give rise to a quasi-invariant, we expand our expression for a SAR image distance ratio as a multivariate Taylor series m the 

imaging transformation variables " and ^. We then examine conditions on -^ and '^ under which the coefficients of the linear 

terms vanish in order to determine quasi-invariant ratios. For the purposes of this analysis, it is sufficient to consider ^   since 

constant •'    implies constant ^ . We select fixed " and ^ 2X^ and ^^ respectively. Thus 

.(28) 

http://www.mbvlab.wpafb.af.mil/papers/Gifsars/geoinv.htm 4/29/04 
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We are interested in determining ^ and ^ that satisfy 

(29) 

that 4s, finding " and ^ that force the coefficient of the linear term in the Taylor expansion to vanish. For ease of notation we 

drop the 0 subscript on " and ^. Note that since -'    is symmetric with respect to " and ^ , then ^ will also be symmetric 

withrespect to " and "^ . Thus we will get the same constraint result on ^ and ^ from forcing either linear coefficient to 
vanish. Hence 

V^f    u = j u 

[(a qY^ \v ■ ^f ffi ■ p)' - [{u -^f * (v ■ pf ]({i ■ qf 

lifiqf *{vqf] 

{vq) [Qp]   -{vp) [uq] 

((u|f+{v-|)') 

[{u-qY ^ivqY) 
(30) 

Note that the denominator cannot vanish for non-trivial '^ provided ^    ~". In a similar manner the denominator of 

"■^ " will not vanish provided ^ "". Note that the case of ■P and *? both parallel to " would obviously give an invariant 

for any choice of " , so we can safely assume a non-trivial denominator for at least one of the linear terms m the Taylor series 
expansion. Equation (30) then reduces to 

{vq{ip-vp{iq)[vqiip+vpuq)=Q 

and thus 

vqiip = ±vpQq    p2) 

If we assume that none of the terms vanish then 

£12. = ±LA 
"■^     '"-P  .(33) 

Note that each side of this equation can be interpreted as the slope of the projection of a three space vector (^ or ^ ) into a 

2D subspace (the *> ' ' plane). Hence the geometric interpretation of this condition is that the projections of ^ and ^ mto the 
slant plane are either parallel (+), or that they possess mirror symmetry in slope (-), e.g., that have slopes of equal magnitude 
but opposite sign. We can therefore state that point sets that generate line segment pairs with slopes of equal magnitude when 

projected into the slant plane are a sufficient condition for a geometric quasi-invariant. Note that the « component of ^ and 

" are unconstrained in this case. The strength of this quasi-invariant (that is, the viewing region over which it remains 

approximately constant) would clearly depend on the relative magnitudes of the " components of ^ and ^, as a large 

^^ component would give the feature more 'wobble' as the imaging geometry is varied in azimuth about the target. 

4. CONCLUSIONS AND FUTURE WORK 

httpr//www.tnbvlab.wpafb.af.inil/papefs/6tfears/geotnv-.htnr 4/29/04 
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This paper introduced the concept of pose invariant features for object recognition in SAR imagery, and showed some basic 
3D geometric arrangements that give rise to such features. The results show that at least theoretically, parallelism and 
coplanarity of scattering center locations gives rise to potential SAR image geometric (absolute) invariants. It remains to be 
seep whether these configurations provide a sufficientiyrich set ofgeometric relationships to allow for a useful number of 
SAR image invariants for vehicle object recognition. This will be the subject of future research. A potentially fruitful 
direction is to consider the use of general invariantconstraints thatnarise between affme 3D to 3D transformations and affine 
2D to 2D transformations for 3D point sets and their corresponding-2D point set images under the action of the SAR image 
projection operation. This would be similar to researdf being done bjrWeiss for the more general case of the affme and 
projective optical camera.-^^'-^'^'^^ 

The MSTAR program has recently released a simplified version of a 3D scattering center based SAR synthetic target 
signature image prediction tool for T72, BMP2, and BTR70 vehicles called Predict Lite. Using the Predict Lite 3D 
scattering center signature representation of these vehicles, it will be possible to analyze 3D scattering center configurations 
of a given target object to determine potential SAR image geometric invariants. The utility of such potential invariants can be 
assessed by examining 2D peaks in Predict Lite synthetic imagery generated from the corresponding 3D scattering center 
data base. If the synthetic imagery suggests that the invariants have recognition discrimination power, then the invariants can 
be evaluated using measured SAR imagery of tactical vehicles recently released by DARPA/ISO and AFRL. 

As part of the research plan outlined above, it will also be necessary to assess the impact of certain signal processing effects 
in the SAR image formation process on invariant stability and accuracy. Major SAR image formation effects likely to be 
important are the radar 2D impulse response, scintillation, discretization, and antenna weighting. These effects are similar to 
impulse response and radial distortion effects in optical sensors. Experience has shown that accurate calculation of optical 
unage invariants requires compensation for such optics distortions, so it is reasonable to expect that the analogous situation 
will arise in SAR imagery.^^ 

Since the SAR sensor has a finite 2D impulse respease, scattering energy that would be concentrated at a point in an ideal 
infinite resolution sensor is instead spread out over the resuUing image in the well known sin(x)/x pattern. This has obvious 
practical implications for the stability of image invariMrts-derived from the 3D scattering center representation in Predict Lite. 
Fortunately Predict Lite includes the SAR impulse response as part of the synthetic image generation process, so that the 
impact of this phenomenon can be assessed using-synthettc data; Antenna weighting functions have an impact similar to the 
effects of the 2D impulse response. 

Scintillation is a phenomena that arises as a consequence &f the finite ^atial resolution in SAR. A given range and azimuth 
bin may contain contributions from many small, unresolved scatters which when coherently summed together cause a net 
response that is highly variable with small cbanges-Htfee-SAR imaging-gewHetry (i.e., the 6 parameters of the SAR imaging 
transformation from section 3). This will tend to make some 3D scattering centers project in an unreliable manner into the 
SAR image. 

The fact that a SAR image is a discrete represeiitatiuii c#aii unJerlyhig-continuous function will effect the accuracy and 
stability of invariant values. Each image pixel represents a coherent average of the underlying scattering energy with it, and 
this will clearly tend to shift scattering positionraway-frottrrtieiridealized'2D locations as predicted by tiie basic SAR 
projective geometry model. Use of state-of-the-art SAR sub-pixel^eak detection algorithms may mitigate these effects 
somewhat, but they cannot elimmate them altogether. 
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